LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Pyro-Phototronic Effect Enhanced Pyramid Structured p-Si/n-ZnO Nanowires Heterojunction Photodetector.

Photo by nicklbaert from unsplash

The emergence of nanomaterials has brought about the development of miniature photodetectors into a new stage, and ZnO nanomaterials are currently one of the most popular research objects. Here, the… Click to show full abstract

The emergence of nanomaterials has brought about the development of miniature photodetectors into a new stage, and ZnO nanomaterials are currently one of the most popular research objects. Here, the performance of a photodetector consisting of micropyramid structured p-Si/n-ZnO NWs heterojunction constructed by an anisotropic chemical etching and hydrothermal method is optimized by using the pyro-phototronic effect, and the photoresponses of the device to 405 and 648 nm lasers are investigated. The results show that, with the introduction of pyro-phototronic effect, the photoresponsivity Rpyro increases to 208 times that of Rphoto when the wavelength is 405 nm and the optical power density is 0.0693 mW/cm2. Moreover, with the increase of the chopper frequency, the photocurrent increases by more than 3 times, and the photoresponsivity is also increased by a factor of 4.5, making it possible to detect ultrafast pulsed light. In addition, in order to increase the current collection efficiency, a thin film Al layer was deposited as the back electrode on the basis of the device, and the photocurrent and photoresponsivity are significantly improved. Finally, the coupling between the pyro-phototronic effect and the piezo-phototronic effect is analyzed by applying compressive strain to the photodetector. When the compressive strain is -1.02%, the photocurrent decreases by 31.4% and the photoresponsivity decreases by 27.9% due to the opposite direction between laser illumination induced pyroelectric polarization charges and compressive strain induced piezoelectric polarization charges. This work not only demonstrates the great potential of pyro-phototronic effect in enhancing the silicon-based heterojunction photodetectors for high-performance photodetection and ultrafast pulsed light detection but also provides assistance for a better understanding of the coupling mechanism between pyro-phototronic and piezo-phototronic effects.

Keywords: pyro phototronic; heterojunction; photodetector; phototronic effect

Journal Title: ACS applied materials & interfaces
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.