LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Trinitroaromatic Salts as High-Energy-Density Organic Cathode Materials for Li-Ion Batteries.

Photo by jupp from unsplash

Even though organic molecules with designed structures can be assembled into high-capacity electrode materials, only limited functional groups such as -C═O and -C═N- could be designed as high-voltage cathode materials… Click to show full abstract

Even though organic molecules with designed structures can be assembled into high-capacity electrode materials, only limited functional groups such as -C═O and -C═N- could be designed as high-voltage cathode materials with enough high capacity. Here, we propose a common chemical raw material, trinitroaromatic salt, to have promising potential to develop organic cathode materials with high discharge voltage and capacity through a strong delocalization effect between -NO2 and aromatic ring. Our first-principles calculations show that electrochemical reactions of trinitroaromatic potassium salt C6H2(NO2)3OK are a 6-electron charge-transfer process, providing a high discharge capacity of 606 mAh g-1 and two voltage plateaus of 2.40 and 1.97 V. Electronic structure analysis indicates that the discharge process from C6H2(NO2)3OK to C6H2(NO2Li2)3OK stabilizes oxidized [C6]n+ to achieve a stable conjugated structure through electron delocalization from -NO2 to [C6]n+. The ordered layer structure C6H2(NO2)3OK can provide large spatial pore channels for Li-ion transport, achieving a high ion diffusion coefficient of 3.41 × 10-6 cm2 s-1.

Keywords: c6h2 no2; capacity; organic cathode; cathode materials; cathode; ion

Journal Title: ACS applied materials & interfaces
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.