LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Rational Molecular Design Strategy for High-Efficiency Ultrapure Blue TADF Emitters: Symmetrical and Rigid Sulfur-Bridged Boron-Based Acceptors.

Photo by spacex from unsplash

Developing highly efficient blue thermally activated delayed fluorescence (TADF) emitters with a narrowband emission is still a challenge. Here, novel ultrapure blue TADF emitters of TSBA-Cz and TSBA-PhCz were designed… Click to show full abstract

Developing highly efficient blue thermally activated delayed fluorescence (TADF) emitters with a narrowband emission is still a challenge. Here, novel ultrapure blue TADF emitters of TSBA-Cz and TSBA-PhCz were designed and synthesized for organic light-emitting diodes (OLEDs). Photophysical and time-dependent density functional theory calculation results simultaneously show the similar intramolecular charge-transfer character of MR-type TADF emitters. Benefiting from the symmetrical and rigid molecular configuration, compounds TSBA-Cz and TSBA-PhCz emit a pure blue emission peak at 463 and 470 nm, a narrow full width at half-maximum (FWHM) of 30 and 36 nm, and a small singlet-triplet energy gap (Ξ”EST) of 0.21 and 0.18 eV, respectively, facilitating their excellent TADF behavior in doped films. Furthermore, highly efficient TADF-OLED devices using the TSBA-Cz and TSBA-PhCz with external quantum efficiencies of 23.4 and 21.3% emit ultrapure blue electroluminescence (EL) at 464 and 472 nm with a narrow FWHM of about 35 nm and CIE color coordinates of (0.14, 0.11) and (0.12, 0.18). This work provides novel TADF emitters for blue OLEDs with narrowband EL.

Keywords: symmetrical rigid; blue tadf; tadf; tadf emitters; ultrapure blue

Journal Title: ACS applied materials & interfaces
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.