LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Interface Analysis of LiCl as a Protective Layer of Li1.3Al0.3Ti1.7(PO4)3 for Electrochemically Stabilized All-Solid-State Li-Metal Batteries.

Photo from wikipedia

Regardless of the superiorities of Li1.3Al0.3Ti1.7(PO4)3 (LATP), such as stability against oxygen and moisture, high ionic conductivity, and low activation energy, its practical application in all-solid-state lithium metal batteries is… Click to show full abstract

Regardless of the superiorities of Li1.3Al0.3Ti1.7(PO4)3 (LATP), such as stability against oxygen and moisture, high ionic conductivity, and low activation energy, its practical application in all-solid-state lithium metal batteries is still impeded by the formation of ionic-resistance interphase layers. Upon contact with Li metal, electron migration from Li to LATP causes the reduction of Ti4+ in LATP. As a result, an ionic-resistance layer will be formed at the interface between the two materials. Applying a buffer layer between them is a potential measure to mitigate this problem. In this study, we analyzed the potential role of LiCl to protect the LATP solid electrolyte through a first-principle study-based density functional theory (DFT) calculation. Density-of-states (DOS) analysis on the Li/LiCl heterostructure reveals the insulating roles of LiCl in preventing electron flow to LATP. The insulating properties begin at depths of 4.3 and 5.0 Å for Li (001)/LiCl (111) and Li (001)/LiCl (001) heterostructures, respectively. These results indicate that LiCl (111) is highly potential to be applied as a protecting layer on LATP to avoid the formation of ionic resistance interphase caused by electron transfer from the Li metal anode.

Keywords: 3al0 3ti1; li1 3al0; layer; latp; licl; metal

Journal Title: ACS applied materials & interfaces
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.