LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Bio-Based, Self-Healing, Recyclable, Reconfigurable Multifunctional Polymers with Both One-Way and Two-Way Shape Memory Properties.

Photo by amandavickcreative from unsplash

Shape memory polymers (SMPs) have attracted wide attention over the past few decades due to their fantastic applications in modern life. Nevertheless, excellent self-healing properties, recyclability, solid-state plasticity, and reversible… Click to show full abstract

Shape memory polymers (SMPs) have attracted wide attention over the past few decades due to their fantastic applications in modern life. Nevertheless, excellent self-healing properties, recyclability, solid-state plasticity, and reversible shape-switching ability are necessary but can rarely be satisfied in one material. Herein, we report multifunctional SMPs by constructing a dynamic boronic ester bond cross-linking network using sustainable Eucommia ulmoides gum as a raw material. Thanks to the crystallization and wide melting temperature range, these kinds of SMPs have thermal-triggered one-way shape memory performance and show two-way shape memory properties, whether under constant stress or stress-free conditions. Owing to the dynamic nature of the boronic ester bond, it exhibits good self-healing properties (near 100% at 80 °C), shape reconfigurability, and chemical recyclability. In addition, by incorporating multiwalled carbon nanotubes, the formed composite is responsive to 808 nm near-infrared light. Its applications are further exploited, including photoresponsive actuators, vascular stents, and light-driven switches. This paper provides a simple way for fabricating multifunctional SMPs, and the as-prepared materials have potential applications in diverse fields, such as biomedicine, intelligent sensing, and soft robotics.

Keywords: way shape; way; self healing; shape memory; shape

Journal Title: ACS applied materials & interfaces
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.