LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Monolayer Iron Oxychloride with a Resonant Band Structure for Ultrasensitive Molecular Sensing.

Photo by eriic from unsplash

Two-dimensional layered materials (2DLMs) are expected to be next-generation commercial sensors for surface-enhanced Raman scattering (SERS) sensing owing to their unique structural features and physicochemical properties. The low sensitivity and… Click to show full abstract

Two-dimensional layered materials (2DLMs) are expected to be next-generation commercial sensors for surface-enhanced Raman scattering (SERS) sensing owing to their unique structural features and physicochemical properties. The low sensitivity and poor universality of 2DLMs are the dominant barriers toward their practical applications. Herein, we report that monolayer iron oxychloride (FeOCl) with a naturally suitable band structure is a promising candidate for ultrasensitive SERS sensing. The generally boosted Raman scattering cross section of different analyte-FeOCl systems benefits from the resonant photoinduced charge transfer processes and strong ground-state interactions. In addition, the strong adsorption ability of monolayer FeOCl is crucial for rapid detection in practical applications, which is proven to be much better than those of conventional SERS sensors. Consequently, monolayer FeOCl enables diverse SERS applications, including multicomponent analysis, chemical reaction monitoring, and indirect ion sensing.

Keywords: band structure; iron oxychloride; monolayer iron

Journal Title: ACS applied materials & interfaces
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.