LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Improving the Performance of Paper-Based Dipole Antennas by Electromagnetic Flux Concentration

Photo from wikipedia

One of the essential issues in modern advanced materials science is to design and manufacture flexible devices, in particular in the framework of the Internet of Things (IoT), to improve… Click to show full abstract

One of the essential issues in modern advanced materials science is to design and manufacture flexible devices, in particular in the framework of the Internet of Things (IoT), to improve integration into applications. An antenna is an essential component of wireless communication modules and, in addition to flexibility, compact dimensions, printability, low cost, and environmentally friendlier production strategies, also represent relevant functional challenges. Concerning the antenna’s performance, the optimization of the reflection coefficient and maximum range remain the key goals. In this context, this work reports on screen-printed paper@Ag-based antennas and optimizes their functional properties, with improvements in the reflection coefficient (S11) from −8 to −56 dB and maximum transmission range from 208 to 256 m, with the introduction of a PVA-Fe3O4@Ag magnetoactive layer into the antenna’s structure. The incorporated magnetic nanostructures allow the optimization of the functional features of antennas with possible applications ranging from broadband arrays to portable wireless devices. In parallel, the use of printing technologies and sustainable materials represents a step toward more sustainable electronics.

Keywords: paper based; based dipole; performance paper; improving performance; performance

Journal Title: ACS Applied Materials & Interfaces
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.