LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Highly Efficient Ternary Near-Infrared Organic Photodetectors for Biometric Monitoring.

Photo from wikipedia

Near-infrared (NIR) small-molecule acceptors that absorb at wavelengths of up to 1000 nm are attractive for applications in organic photodetectors (OPDs) and biometrics. In this study, we incorporated IEICO-4F as… Click to show full abstract

Near-infrared (NIR) small-molecule acceptors that absorb at wavelengths of up to 1000 nm are attractive for applications in organic photodetectors (OPDs) and biometrics. In this study, we incorporated IEICO-4F as the third component for PffBT4T-2OD:PC71BM-based OPDs to provide an efficient NIR response while greatly suppressing the leakage current at reverse bias. By varying the blend ratio and thickness (250-600 nm), we obtained an NIR OPD displaying an ultralow dark-current density (JD = 2.62 nA cm-2), ultrahigh detectivity [D* = 7.2 × 1012 Jones (850 nm)], high sensitivity, and photoresponsivity covering the region from the ultraviolet to the NIR. We used tapping-mode atomic force microscopy, optical microscopy, grazing-incidence wide-angle X-ray scattering, and contact angle measurements to investigate the effect of IEICO-4F on the performance of the ternary OPDs. The low compatibility of PffBT4T-2OD and IEICO-4F, originating from weak intermolecular interactions, allowed us to manipulate the degree of phase separation between the donor and acceptor in the ternary blends, leading to an optimized blend morphology featuring efficient charge separation, transport, and collection. To demonstrate its applicability, we integrated our OPD with two light-emitting diodes and used the system for precisely calculated transmissive pulse oximetry.

Keywords: highly efficient; near infrared; microscopy; organic photodetectors; efficient ternary; ternary near

Journal Title: ACS applied materials & interfaces
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.