LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Tetrahedral-Framework Nucleic Acid Loaded with MicroRNA-155 Enhances Immunocompetence in Cyclophosphamide-Induced Immunosuppressed Mice by Modulating Dendritic Cells and Macrophages.

Photo by chrisabney from unsplash

Nanomaterials are often used as immunomodulators because they can be tailored by a controllable process. In this work, a complex based on a tetrahedral framework nucleic acid delivery system and… Click to show full abstract

Nanomaterials are often used as immunomodulators because they can be tailored by a controllable process. In this work, a complex based on a tetrahedral framework nucleic acid delivery system and MicroRNA-155, known as T-155, is synthesized for the modulation of immunosuppression. In vivo, T-155 ameliorated spleen and thymus damage and hematopoiesis suppression in cyclophosphamide-induced immunosuppressed mice by promoting T-cell proliferation to resist oxidative stress. In vitro, T-155 induced immature dendritic cells (DCs) to differentiate into mature DCs by the ERK1/2 pathway and converted M0 macrophages (Mφ) into the M1 type by the NF-κB pathway to enhance the surveillance capabilities of antigen-presenting cells. The experimental results suggest that T-155 has therapeutic potential as an immunomodulator for immunosuppression.

Keywords: induced immunosuppressed; tetrahedral framework; framework nucleic; nucleic acid; cyclophosphamide induced; microrna 155

Journal Title: ACS applied materials & interfaces
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.