LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Microfluidic Engineering of Crater-Terrain Hydrogel Microparticles: Toward Novel Cell Carriers.

Photo by backyardastronomyguy from unsplash

Fabrication and application of novel anisotropic microparticles are of wide interest. Herein, a new method for producing novel crater-terrain hydrogel microparticles is presented using a concept of droplet-aerosol impact and… Click to show full abstract

Fabrication and application of novel anisotropic microparticles are of wide interest. Herein, a new method for producing novel crater-terrain hydrogel microparticles is presented using a concept of droplet-aerosol impact and regional polymerization. The surface pattern of microparticles is similar to the widespread "crater" texture on the lunar surface and can be regulated by the impact morphology of aerosols on the droplet surface. Methodological applicability was demonstrated by producing ionic-cross-linked (alginate) and photo-cross-linked (poly(ethylene glycol) diacrylate, PEGDA) microparticles. Additionally, the crater-terrain microparticles (CTMs) can induce nonspecific protein absorption on their surface to acquire cell affinity, and they were exploited as cell carriers to load living cells. Cells could adhere and proliferate, and a special cellular adhesion fingerprint was observed on the novel cell carrier. Therefore, the scalable manufacturing method and biological potential make the engineered microparticles promising to open a new avenue for exploring cell-biomaterial crosstalk.

Keywords: hydrogel microparticles; cell; crater terrain; terrain hydrogel

Journal Title: ACS applied materials & interfaces
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.