LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Development of Low-Resistance Ohmic Contacts with Bilayer NiO/Al-Doped ZnO Thin Films to p-type GaN.

Photo by stayandroam from unsplash

The fabrication of low-resistance and thermally stable Ohmic contacts is essential for the realization of reliable GaN power devices. In the particular case of p-type GaN, a thin Ni/Au bilayer… Click to show full abstract

The fabrication of low-resistance and thermally stable Ohmic contacts is essential for the realization of reliable GaN power devices. In the particular case of p-type GaN, a thin Ni/Au bilayer is commonly used for Ohmic contacts. However, Au metal contacts are quite expensive, are incompatible with the complementary metal oxide-semiconductor foundries, and also have poor thermal stability. Thus, seeking an alternative that is affordable and thermally stable is crucial. In the present study, we investigate Au-free Ohmic contact formation on p-type GaN using a bilayer Ni/Al-doped ZnO (AZO) thin film. Careful studies were focused on identifying the role of process parameters such as annealing parameters: temperature, time, and atmosphere in order to obtain an excellent Ohmic contact on p-GaN. Our results show that the contact resistance can be significantly reduced using a Ni/AZO bilayer with a suitable rapid thermal process. We demonstrate that the specific contact resistance for Ni/AZO on p-GaN can reach the lowest value of 1.85 × 10-4 Ω·cm2 for a sample with a 5 nm Ni layer annealed at 500 °C in air for 5 min. Our work demonstrates that the bilayer Ni/AZO contact could be suitable for efficient GaN power diodes or transistors.

Keywords: ohmic contacts; contact; type gan; resistance; doped zno; low resistance

Journal Title: ACS applied materials & interfaces
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.