LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Impact of Synthesis Chelation on the Crystallography and Capacity of Li-Rich Li1.2Ni0.13Mn0.54Fe0.13O2 Cathode Particles.

The quest for removal of cobalt from battery materials has intensified in the face of intensifying demand for batteries. Cobalt-free lithium-rich Li1.2Ni0.13Mn0.54Fe0.13O2 (LNMFO) is synthesized under variation of chelating agent… Click to show full abstract

The quest for removal of cobalt from battery materials has intensified in the face of intensifying demand for batteries. Cobalt-free lithium-rich Li1.2Ni0.13Mn0.54Fe0.13O2 (LNMFO) is synthesized under variation of chelating agent ratio and pH using the sol-gel method. Systematic search of the chelation and pH space found that the extractable capacity of the synthesized LNMFO is most clearly correlated to the ratio of chelating agent to transition metal oxide; a ratio of transition metal to citric acid of 2:1 achieves greater capacity at the expense of relative capacity retention. Charge-discharge cycling, dQ/dV analysis, XRD, and Raman at different charging potentials are used to quantify the different degrees of activation of the Li2MnO3 phase in the LNMFO powders synthesized under different chelation ratios. SEM and HRTEM analysis are employed to understand the effect of particle size and crystallography on the activation of Li2MnO3 phase in the composite particles. An unprecedented use of the marching cube algorithm to evaluate atomic scale tortuosity of crystallographic planes in HRTEM revealed that subtle undulations in the planes in addition to stacking faults correlate to the extracted capacity and stability of the various LNMFO synthesized.

Keywords: chelation; 2ni0 13mn0; li1 2ni0; capacity; 13mn0 54fe0; rich li1

Journal Title: ACS applied materials & interfaces
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.