To alleviate the economic and environmental damage caused by industrial discharges of oily wastewater, materials applied for efficient oil/water separation are receiving significant attention from researchers and engineers. Among others,… Click to show full abstract
To alleviate the economic and environmental damage caused by industrial discharges of oily wastewater, materials applied for efficient oil/water separation are receiving significant attention from researchers and engineers. Among others, switchable wettable materials for bidirectional oil/water separation show great potential for practical applications. Inspired by mussels, we utilized a simple immersion method to construct a polydopamine (PDA) coating on a peony-like copper phosphate surface. Then, TiO2 was deposited on the PDA coating surface to build a micro-nano hierarchical structure, which was modified with octadecanethiol (ODT) to obtain a switchable wettable peony-like superhydrophobic surface. The water contact angle of the obtained superhydrophobic surface reached 153.5°, and the separation efficiency was as high as 99.84% with a flux greater than 15,100 L/(m2·h) after 10 separation cycles for a variety of heavy oil/water mixtures. Notably, the modified membranes have a unique photoresponsiveness, transforming to superhydrophilic upon ultraviolet irradiation, achieving separation efficiencies of up to 99.83% and separation fluxes greater than 32,200 L/(m2·h) after 10 separation cycles for a variety of light oil/water mixtures. More importantly, this switch behavior is reversible, and the high hydrophobicity can be restored after heating to achieve efficient separation of heavy oil/water mixtures. In addition, the prepared membranes can maintain high hydrophobicity under acid-base conditions and after 30 sandpaper abrasion cycles, and damaged membranes can be restored to superhydrophobicity after a brief modification in the ODT solution. This simple-to-prepare, easy-to-repair, robust membrane with switchable wettability shows great potential in the field of oil/water separation.
               
Click one of the above tabs to view related content.