LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Modulation of Switching Characteristics in a Single VO2 Nanobeam with Interfacial Strain via the Interconnection of Multiple Nanoscale Channels.

Photo by mat_graphik from unsplash

We demonstrate the modulation of electrical switching properties through the interconnection of multiple nanoscale channels (∼600 nm) in a single VO2 nanobeam with a coexisting metal-insulator (M-I) domain configuration during… Click to show full abstract

We demonstrate the modulation of electrical switching properties through the interconnection of multiple nanoscale channels (∼600 nm) in a single VO2 nanobeam with a coexisting metal-insulator (M-I) domain configuration during phase transition. The Raman scattering characteristics of the synthesized VO2 nanobeams provide evidence that substrate-induced interfacial strain can be inhomogeneously distributed along the length of the nanobeam. Interestingly, the nanoscale VO2 devices with the same channel length and width exhibit distinct differences in hysteric current-voltage characteristics, which are explained by theoretical calculations of resistance change combined with Joule heating simulations of the nanoscale VO2 channels. The observed results can be attributed to the difference in the spatial distribution and fraction ratios of M-I domains due to interfacial strain in the nanoscale VO2 channels during the metal-insulator transition process. Moreover, we demonstrate the electrically activated resistive switching characteristics based on the hysteresis behaviors of the interconnected nanoscale channels, implying the possibility of manipulating multiple resistive states. Our results may offer insights into the nanoscale engineering of correlated phases in VO2 as the key materials of neuromorphic computing for which nonlinear conductance is essential.

Keywords: nanobeam; interfacial strain; interconnection multiple; nanoscale channels; vo2

Journal Title: ACS applied materials & interfaces
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.