LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Metal-Decorated InN Monolayer Senses N2 against CO2.

Photo from wikipedia

Poor selectivity is a common problem faced by gas sensors. In particular, the contribution of each gas cannot be reasonably distributed when a binary mixture gas is co-adsorbed. In this… Click to show full abstract

Poor selectivity is a common problem faced by gas sensors. In particular, the contribution of each gas cannot be reasonably distributed when a binary mixture gas is co-adsorbed. In this paper, taking CO2 and N2 as an example, density functional theory is used to reveal the mechanism of selective adsorption of a transition metal (Fe, Co, Ni, and Cu)-decorated InN monolayer. The results show that Ni decoration can improve the conductivity of the InN monolayer while at the same time demonstrating an unexpected affinity for binding N2 instead of CO2. Compared with the pristine InN monolayer, the adsorption energies of N2 and CO2 on the Ni-decorated InN are dramatically increased from -0.1 to -1.93 eV and from -0.2 to -0.66 eV, respectively. Interestingly, for the first time, the density of states demonstrates that the Ni-decorated InN monolayer achieves a single electrical response to N2, eliminating the interference of CO2. Furthermore, the d-band center theory explains the advantage of Ni decorated in gas adsorption over Fe, Co, and Cu atoms. We also highlight the necessity of thermodynamic calculations in evaluating practical applications. Our theoretical results provide new insights and opportunities for exploring N2-sensitive materials with high selectivity.

Keywords: gas; metal decorated; decorated inn; inn monolayer; monolayer

Journal Title: ACS applied materials & interfaces
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.