LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Three-Dimensional Carbon Foam Modified with Mg3N2 for Ultralong Cyclability of a Dendrite-Free Li Metal Anode.

Photo by viazavier from unsplash

Uncontrolled growth of lithium dendrites and huge volume change during the lithium plating/stripping process as well as poor mechanical properties of the solid electrolyte interphase (SEI) are key obstacles to… Click to show full abstract

Uncontrolled growth of lithium dendrites and huge volume change during the lithium plating/stripping process as well as poor mechanical properties of the solid electrolyte interphase (SEI) are key obstacles to the development of a stable Li metal anode. Here, an ultralight Mg3N2-modified carbon foam (CF-Mg3N2) was fabricated as a collector to address these issues. The calculated results show that the CF-Mg3N2 composite is relatively stable in terms of energy. Based on the synergistic effect of the three-dimensional skeleton and the lithiophilic nature of Mg3N2, homogeneous lithium deposition/stripping was realized around the foam carbon skeleton with an extremely low nucleation overpotential (∼9.3 mV) and high retention of Coulombic efficiency (99.3%) as well as long cyclability (700 cycles and 3000 h in half and symmetrical cells, respectively). Meanwhile, Mg3N2-CF@Li//LiFePO4 full cells also showed better rate capability and more stable cycling capability than CF@Li//LiFePO4 and Li//LiFePO4 cells, exhibiting extreme practicality. Accordingly, the design concept mentioned in this work provides a far-reaching influence on the development of a stable Li metal anode.

Keywords: mg3n2; metal anode; three dimensional; carbon foam

Journal Title: ACS applied materials & interfaces
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.