LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Effects of Interface Oxidation on Noise Properties and Performance in III–V Vertical Nanowire Memristors

Photo from wikipedia

Memristors implemented as resistive random-access memories (RRAMs) owing to their low power consumption, scalability, and speed are promising candidates for in-memory computing and neuromorphic applications. Moreover, a vertical 3D implementation… Click to show full abstract

Memristors implemented as resistive random-access memories (RRAMs) owing to their low power consumption, scalability, and speed are promising candidates for in-memory computing and neuromorphic applications. Moreover, a vertical 3D implementation of RRAMs enables high-density crossbar arrays at a minimal footprint. Co-integrated III–V vertical gate-all-around MOSFET selectors in a one-transistor-one-resistor (1T1R) configuration have recently been demonstrated where an interlayer (IL)-oxide has been shown to enable high RRAM endurance needed for applications like machine learning. In this work, we evaluate the role of the IL-oxide directly on InAs vertical nanowires using low-frequency noise characterization. We show that the low-frequency noise or the 1/f-noise in InAs vertical RRAMs can be reduced by more than 3 orders of magnitude by engineering the InAs/high-k interface. We also report that the noise properties of the vertical 1T1R do not degrade significantly after RRAM integration making them attractive to be used in emerging electronic circuits.

Keywords: effects interface; noise; noise properties; interface oxidation; oxidation noise; iii vertical

Journal Title: ACS Applied Materials & Interfaces
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.