LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Guest Molecule Insertion-Optimized d-Band Center Position in MoS2 with Improved Sulfite Activation Ability Inspired by Sulfite Oxidase.

Photo by socialcut from unsplash

As a prospective member in the family of advanced oxidation processes (AOPs), heterogeneous sulfite activation shows low cost and high safety for poisonous organic pollutants' degradation. To obtain an efficient… Click to show full abstract

As a prospective member in the family of advanced oxidation processes (AOPs), heterogeneous sulfite activation shows low cost and high safety for poisonous organic pollutants' degradation. To obtain an efficient sulfite activator, sulfite oxidase (SuOx), a molybdenum-based enzyme that can prompt oxidation and activation of sulfite, inspired us greatly. Based on the structure of SuOx, MoS2/BPE (BPE = 1, 2-bis-(4-pyridyl)-ethylene) is synthesized successfully. In MoS2/BPE, the BPE molecule is inserted between the MoS2 layers as a pillar and the N atom links with Mo4+ directly. MoS2/BPE shows excellent SuOx mimic activity. Theoretical calculation implies that BPE insertion optimizes the d-band center position of MoS2/BPE, which regulates the interaction between MoS2 and *SO42-. This prompts •SO4- generation and organic pollutants' degradation. At pH 7.0, its tetracycline degradation efficiency achieved is 93.9% in 30 min. Furthermore, its sulfite activation ability also endows MoS2/BPE with excellent antibiofouling performance because •SO4- can kill the microorganisms in water effectively. This work develops a new sulfite activator based on SuOx. The connection between structure and SuOx mimic activity and sulfite activation ability is clarified in detail.

Keywords: mos2 bpe; mos2; sulfite activation; activation ability; activation

Journal Title: ACS applied materials & interfaces
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.