LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Superior Anticorrosion Performance of Well-Dispersed MXene-Polymer Composite Coatings Enabled by Covalent Modification and Ambient Electron-Beam Curing.

Photo by miracleday from unsplash

MXene-reinforced composite coatings have recently shown promise for metal anticorrosion due to their large aspect ratio and antipermeability; however, the challenges of the poor dispersion, oxidation, and sedimentation of MXene… Click to show full abstract

MXene-reinforced composite coatings have recently shown promise for metal anticorrosion due to their large aspect ratio and antipermeability; however, the challenges of the poor dispersion, oxidation, and sedimentation of MXene nanofillers in a resin matrix that are often encountered in the existing curing methods have greatly limited practical applications. Herein, we reported an efficient, ambient, and solvent-free electron beam (EB) curing technology to fabricate PDMS@MXene filled acrylate-polyurethane (APU) coatings for anticorrosion of 2024 Al alloy, a common aerospace structural material. We showed that the dispersion of MXene nanoflakes modified by PDMS-OH was dramatically improved in EB-cured resin and enhanced the water resistance through the additional water-repellent groups of PDMS-OH. Moreover, the controllable irradiation-induced polymerization enabled a unique high-density cross-linked network, presenting a large physical barrier against corrosive media. The newly developed APU-PDMS@MX1 coatings achieved excellent corrosion-resistance with the highest protection efficiency of 99.9957%. The coating filled with uniformly distributed PDMS@MXene promoted the corrosion potential, corrosion current density, and corrosion rate to be -0.14 V, 1.49 × 10-9 A/cm2, and 0.0004 mm/year, respectively, and the impedance modulus was increased by 1-2 orders of magnitude compared to that of APU-PDMS coating. This work combining 2D material with EB curing technology broadens the avenue for designing and fabricating composite coatings for metal corrosion protection.

Keywords: anticorrosion; beam curing; composite coatings; electron beam; corrosion; mxene

Journal Title: ACS applied materials & interfaces
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.