LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Novel Nonstoichiometric Niobium Oxide Anode Material with Rich Oxygen Vacancies for Advanced Lithium-Ion Capacitors.

Photo by ldxcreative from unsplash

Given the inherent features of open tunnel-like structures, moderate lithiation potential (1.0-3.0 V vs Li/Li+), and reversible redox couples (Nb5+/Nb4+ and Nb4+/Nb3+ redox couples), niobium-based oxides with Wadsley-Roth crystallographic shear… Click to show full abstract

Given the inherent features of open tunnel-like structures, moderate lithiation potential (1.0-3.0 V vs Li/Li+), and reversible redox couples (Nb5+/Nb4+ and Nb4+/Nb3+ redox couples), niobium-based oxides with Wadsley-Roth crystallographic shear structure are promising anode materials. However, their practical rate capability and cycling stability are still hindered by low intrinsic electronic conductivity and structural stability. Herein, ultrathin carbon-confined Nb12O29 materials with rich oxygen vacancies (Nb12O29-x@C) were designed and synthesized to address above-mentioned challenges. Computational simulations combined with experiments reveal that the oxygen vacancies can regulate the electronic structure to increase intrinsic electronic conductivity and reduce the Li+ diffusion barrier. Meanwhile, the carbon coating can enhance structural stability and further improve the electronic conductivity of the Nb12O29 material. As a result, the as-prepared Nb12O29-x@C exhibits high reversible capacity (226 mAh g-1 at 0.1 A g-1), excellent high-rate performance (83 mAh g-1 at 5.0 A g-1), and durable cycling life (98.1% capacity retention at 1.0 A g-1 after 3000 cycles). The lithium storage mechanism and structural stability of Nb12O29-x@C were also revealed by in situ X-ray diffraction (XRD), ex situ X-ray photoelectron spectroscopy (XPS), and ex situ Raman spectroscopy. When applied as the anode of lithium-ion capacitors (LICs), the as-built LIC achieves high energy density (72.4 Wh kg-1) within the voltage window of 0.01-3.5 V, demonstrating the practical application potential of the Nb12O29-x@C materials.

Keywords: spectroscopy; ion capacitors; lithium ion; rich oxygen; oxygen vacancies

Journal Title: ACS applied materials & interfaces
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.