LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Rapid Screening and Synthesis of Abiotic Synthetic Receptors for Selective Bacterial Recognition.

Photo from wikipedia

The major challenges that impede the preparation of abiotic synthetic receptors designed to feature selective bacterial recognition properties are the complexity, nonrobustness, and environmental adaptability of live microbes. Here, we… Click to show full abstract

The major challenges that impede the preparation of abiotic synthetic receptors designed to feature selective bacterial recognition properties are the complexity, nonrobustness, and environmental adaptability of live microbes. Here, we describe a new rapid screening strategy to determine the optimal polymer formulation on 96-well plates and then produce abiotic synthetic receptors by imprinting the surface marker lipopolysaccharide (LPS) of Gram-negative bacteria. The resulting LPS-imprinted nanoparticles reveal remarkable affinity toward LPS with an equilibrium dissociation constant (KD) value of 10-12 M and can distinguish and selectively recognize specific bacteria in whole blood at concentrations down to 10 cells/mL. The incorporation of gold nanorods into imprinted nanoparticles allows selective microbial inactivation based on photothermal treatment. We have also demonstrated that the imprinted nanoparticles with high affinity for bacteria could induce bacteria clustering, drive the expression of quorum-sensing-controlled signal molecules, and eventually enhance the productivity of the cell factory.

Keywords: selective bacterial; synthetic receptors; abiotic synthetic; bacterial recognition; rapid screening

Journal Title: ACS applied materials & interfaces
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.