LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Green Light-Triggerable Chemo-Photothermal Activity of Cytarabine-Loaded Polymer Carbon Dots: Mechanism and Preliminary In Vitro Evaluation

Photo from wikipedia

Carbon-based nanostructures are attracting a lot of attention because of their very low toxicity, excellent visible light-triggered optical and photothermal properties, and intriguing applications. Currently, the development of multifunctional carbon-based… Click to show full abstract

Carbon-based nanostructures are attracting a lot of attention because of their very low toxicity, excellent visible light-triggered optical and photothermal properties, and intriguing applications. Currently, the development of multifunctional carbon-based nanostructures for a synergistic chemo-photothermal approach is a challenging topic for the advancement of cancer treatment. Here, we report an unprecedented example of photoresponsive carbon-based polymer dots (CPDs-PNM) obtained by a one-pot thermal process from poly(N-isopropylacrylamide) (PNIPAM) without using organic solvent and additional reagents. The CPDs-PNM nanostructures were characterized by spectroscopic techniques, transmission electron microscopy, and atomic force microscopy. The CPDs-PNM exhibited high photothermal conversion efficiency, lower critical solution temperature (LCST) behavior, and good cytarabine (arabinosyl cytosine, AraC) loading capacity (62.3%). The formation of a CPDs-PNM/AraC adduct and photothermal-controlled drug release, triggered by green light excitation, were demonstrated by spectroscopic techniques, and the drug–polymer interaction and drug release mechanism were well supported by modeling simulation calculations. The cellular uptake of empty and AraC-loaded CPDs-PNM was imaged by confocal laser scanning microscopy. In vitro experiments evidenced that CPDs-PNM did not affect the viability of neuroblastoma cells, while the CPDs-PNM/AraC adduct under light irradiation exhibited significantly higher toxicity than AraC alone by a combined chemo-photothermal effect.

Keywords: chemo photothermal; carbon; microscopy; cpds pnm

Journal Title: ACS Applied Materials & Interfaces
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.