Semitransparent perovskite solar cells (ST-PSCs) play a very important role in high-efficiency tandem solar cells and building integrated photovoltaics (BIPV). One of the main challenges for high-performance ST-PSCs is to… Click to show full abstract
Semitransparent perovskite solar cells (ST-PSCs) play a very important role in high-efficiency tandem solar cells and building integrated photovoltaics (BIPV). One of the main challenges for high-performance ST-PSCs is to obtain suitable top-transparent electrodes by appropriate methods. Transparent conductive oxide (TCO) films, as the most widely used transparent electrodes, are also adopted in ST-PSCs. However, the possible ion bombardment damage during the TCO deposition and the relatively high postannealing temperature usually required for high-quality TCO films is not conducive to improving the performance of the perovskite solar cells with low ion bombardment and temperature tolerances. Herein, cerium-doped indium oxide (ICO) thin films are prepared by reactive plasma deposition (RPD) at substrate temperatures below 60 °C. A high carrier mobility of 50.26 cm2 V-1 s-1, a low resistivity of 7.18 × 10-4 Ω·cm, and an average transmittance of 86.53% in the wavelength range of 400-800 nm and 87.37% in the wavelength range of 800-1200 nm are achieved. The RPD-prepared ICO film is used as a transparent electrode on top of the ST-PSCs (band gap ∼1.68 eV), and photovoltaic conversion efficiency (PCE) of 18.96% is achieved on the champion device.
               
Click one of the above tabs to view related content.