LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Efficient Electrocatalytic Nitrate Reduction to Ammonia Based on DNA-Templated Copper Nanoclusters.

Photo by kdghantous from unsplash

In alkaline solutions, the electrocatalytic conversion of nitrates to ammonia (NH3) (NO3RR) is hindered by the sluggish hydrogenation step due to the lack of protons on the electrode surface, making… Click to show full abstract

In alkaline solutions, the electrocatalytic conversion of nitrates to ammonia (NH3) (NO3RR) is hindered by the sluggish hydrogenation step due to the lack of protons on the electrode surface, making it a grand challenge to synthesize NH3 at a high rate and selectivity. Herein, single-stranded deoxyribonucleic acid (ssDNA)-templated copper nanoclusters (CuNCs) were synthesized for the electrocatalytic production of NH3. Because ssDNA was involved in the optimization of the interfacial water distribution and H-bond network connectivity, the water-electrolysis-induced proton generation was enhanced on the electrode surface, which facilitated the NO3RR kinetics. The activation energy (Ea) and in situ spectroscopy studies adequately demonstrated that the NO3RR was exothermic until NH3 desorption, indicating that, in alkaline media, the NO3RR catalyzed by ssDNA-templated CuNCs followed the same reaction path as the NO3RR in acidic media. Electrocatalytic tests further verified the efficiency of ssDNA-templated CuNCs, which achieved a high NH3 yield rate of 2.62 mg h-1 cm-2 and a Faraday efficiency of 96.8% at -0.6 V vs reversible hydrogen electrode. The results of this study lay the foundation for engineering catalyst surface ligands for the electrocatalytic NO3RR.

Keywords: ssdna templated; efficient electrocatalytic; templated copper; copper nanoclusters

Journal Title: ACS applied materials & interfaces
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.