LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Renal Clearable Quantum Dot-Drug Conjugates Modulate Labile Iron Species and Scavenge Free Radicals for Attenuating Chemotherapeutic Drug-Induced Acute Kidney Injury.

Photo from wikipedia

Chemotherapeutic drug-induced acute kidney injury (AKI) involves pathologically increased labile iron species in the kidneys that mediate the excessive generation of reactive oxygen species (ROS) to induce ferroptosis and apoptosis,… Click to show full abstract

Chemotherapeutic drug-induced acute kidney injury (AKI) involves pathologically increased labile iron species in the kidneys that mediate the excessive generation of reactive oxygen species (ROS) to induce ferroptosis and apoptosis, subsequently driving renal dysfunction. Herein, we report renal clearable quantum dot-drug conjugates (QDCs) composed of carbon quantum dot (CDs), deferoxamine (DFO), and poly(ethylene glycol) (PEG) for attenuating chemotherapeutic drug-induced AKI. The CDs component in QDCs can not only provide DFO with high renal specificity to effectively remove the pathological labile iron species in the kidneys to block the source of ROS generation but also exert high antioxidative effects to avoid renal oxidative damage caused by the ROS that have been overproduced. In cisplatin-induced AKI mice, QDCs can inhibit ferroptosis and apoptosis with high efficacy for AKI treatment. This study will provide a new paradigm to realize enhanced therapeutic efficacy for AKI by simultaneously removing the pathological labile iron species and eliminating overproduced ROS in the kidneys to achieve the goal of addressing both symptoms and root causes.

Keywords: drug induced; iron species; chemotherapeutic drug; labile iron; drug

Journal Title: ACS applied materials & interfaces
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.