LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Structural Regulation of Thiophene-Based Two-Dimensional Covalent Organic Frameworks toward Highly Efficient Photocatalytic Hydrogen Generation.

Photo from wikipedia

Two imine-based 2D covalent organic frameworks (COFs) with slight differences in their core structures are presented. The COF containing benzotrithiophene moieties with better planarity and π-conjugation (BTTh-TZ-COF) shows much better… Click to show full abstract

Two imine-based 2D covalent organic frameworks (COFs) with slight differences in their core structures are presented. The COF containing benzotrithiophene moieties with better planarity and π-conjugation (BTTh-TZ-COF) shows much better photocatalytic activity than the COF with trithienylbenzene cores (TThB-TZ-COF). Further photoelectrochemical study reveals the catalytic mechanism in more detail. Since other factors such as crystallinity, porosity, and optical bandgaps are equal, the different structures of the cores in the two similar COFs are the major contributors to the significantly different photocatalytic performance. The better electron delocalization of the planar trithiophene-based core and the enhanced D-A interactions between the triazine and trithiophene units in BTTh-TZ-COF create efficient charge separation and transfer, thus leading to superior photocatalytic hydrogen evolution activity. A new strategy for preparing high-performance organic photocatalysts for solar-energy conversion is revealed by this study.

Keywords: covalent organic; organic frameworks; photocatalytic hydrogen; structural regulation

Journal Title: ACS applied materials & interfaces
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.