LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Composition Engineering Growth of Cs3Bi2I9 Single Crystals with Low Defect Density for X-ray Detectors.

Photo from wikipedia

Cs3Bi2I9 (CBI) single crystal (SC) is a promising material for a higher-performance direct X-ray detector. However, the composition of CBI SC prepared by the solution method usually deviates from the… Click to show full abstract

Cs3Bi2I9 (CBI) single crystal (SC) is a promising material for a higher-performance direct X-ray detector. However, the composition of CBI SC prepared by the solution method usually deviates from the ideal stoichiometric ratio, which limits the detector performance. In this paper, based on the finite element analysis method, the growth model of the top-seed solution method has been established, and then the influence of precursor ratio, temperature field, and other parameters on the composition of CBI SC has been simulated. The simulation results were used to guide the growth of the CBI SCs. Finally, a high-quality CBI SC with a stoichiometric ratio of Cs/Bi/I = 2.87:2:8.95 has been successfully grown, and the defect density is as low as 1.03 × 109 cm-3, the carrier lifetime is as high as 16.7 ns, and the resistivity is as high as 1.44 × 1012 Ω·cm. The X-ray detector based on this SC has a sensitivity of 29386.2 μC·Gyair-1 cm-2 at an electric field of 40 V·mm-1, and a low detection limit of 0.36 nGyair·s-1, creating a record for the all-inorganic perovskite materials.

Keywords: composition engineering; growth; ray; cbi; defect density

Journal Title: ACS applied materials & interfaces
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.