LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Highly Stable Metal─Na0.02Pb0.98Te Contacts for Medium Temperature Thermoelectric Devices.

Photo from wikipedia

In the medium temperature (600-850 K) range, Na0.02Pb0.98Te is a highly efficient p-type thermoelectric compound. Device fabrication utilizing this compound for power generation demands highly stable low-contact resistance contacts with… Click to show full abstract

In the medium temperature (600-850 K) range, Na0.02Pb0.98Te is a highly efficient p-type thermoelectric compound. Device fabrication utilizing this compound for power generation demands highly stable low-contact resistance contacts with metal electrodes. This work investigates the microstructural, electrical, mechanical, and thermochemical stability of Na0.02Pb0.98Te-metal (Ni, Fe, and Co) contacts made by a one-step vacuum hot pressing process. Direct contact mostly resulted in either an interface with poor mechanical integrity, as in Co and Fe, or poisoning of the TE compound, as in the case of Ni, which results in high specific contact resistance (rc). In Ni and Co, adding a SnTe interlayer lowers the rc and strengthens the contact. It does not, however, effectively stop Ni from diffusing into Na0.02Pb0.98Te. The bonding is poor in the Fe/SnTe/Na0.02Pb0.98Te contacts due to the absence of any reaction at the Fe/SnTe interface. A composite buffer layer Co + 75 vol % SnTe with SnTe improves the mechanical stability of the Co contact with moderately lesser rc than pure SnTe alone. However, a similar approach with Fe does not yield stable contact. The Co/Co + 75 vol % SnTe/SnTe/Na0.02Pb0.98Te contact exhibits rc less than 50 μΩ cm2 and has good microstructural and mechanical stability after annealing at 723 K for 170 h.

Keywords: highly stable; medium temperature; contact; na0 02pb0; 02pb0 98te; snte

Journal Title: ACS applied materials & interfaces
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.