LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Molecular Orientation-Regulated Bioinspired Multilayer Composites with Largely Enhanced Mechanical Properties.

Photo from wikipedia

Natural nacre's hierarchical brick-and-mortar architecture motivates intensive studies on inorganic platelet/polymer multilayer composites, targeting mechanical property enhancement only by two strategies: optimizing the size and alignment of inorganic platelets and… Click to show full abstract

Natural nacre's hierarchical brick-and-mortar architecture motivates intensive studies on inorganic platelet/polymer multilayer composites, targeting mechanical property enhancement only by two strategies: optimizing the size and alignment of inorganic platelets and improving the interfacial interaction between inorganic platelets and polymers. Herein, a new strategy of polymer chain orientation to enhance the property of bioinspired multilayered composites is presented, which facilitates more stress to be transferred from polymer layers to inorganic platelets by simultaneous stiffening of multiple polymer chains. To this end, bioinspired multilayer films consisting of oriented sodium carboxymethyl cellulose chains and alumina platelets are designed and fabricated by three successive steps of water evaporation-induced gelation in glycerol, high-ratio prestretching, and Cu2+ infiltration. Regulating the orientation state of sodium carboxymethyl cellulose leads to a large enhancement of mechanical properties, including Young's modulus (2.3 times), tensile strength (3.2 times), and toughness (2.5 times). It is observed experimentally and predicted theoretically that the increased chain orientation induces failure mode transition in the multilayered films from alumina platelet pull-out to alumina platelet fracture because more stress is transferred to the platelets. This strategy opens an avenue toward rational design and manipulation of polymer aggregation states in inorganic platelet/polymer multilayer composites and allows a highly effective increase in modulus, strength, and toughness.

Keywords: polymer; orientation; bioinspired multilayer; mechanical properties; multilayer composites

Journal Title: ACS applied materials & interfaces
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.