LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Pt Nanoflowers as a Highly Effective Electrocatalyst for Glucose Oxidation in Abiotic Glucose Fuel Cells.

Photo from wikipedia

Self-powered implantable medical devices (IMDs) without any external power supply are desired in a growing number of situations. Glucose fuel cells (GFCs) that convert the chemical energy of intrinsic glucose… Click to show full abstract

Self-powered implantable medical devices (IMDs) without any external power supply are desired in a growing number of situations. Glucose fuel cells (GFCs) that convert the chemical energy of intrinsic glucose and oxygen into electricity are promising technology to achieve this goal. Herein, a Pt nanoflower (Pt NF) catalyst is prepared by using a facile one-step reduction method and employed as the anode catalyst for abiotic GFCs in a neutral environment at a physiological concentration of glucose. The Pt NF catalyst exhibits high electrocatalytic activity, catalytic selectivity, and good durability in the electrochemical analysis. The Pt NF's rapid linear current response to the variation of glucose concentration within a wide range also makes it a promising material for glucose sensors. A GFC with two chambers fabricated with a Pt NF catalyst-decorated carbon paper (Pt NFs/CP) anode and a Pt sheet cathode generates a maximum power density (Pmax) of 13.8 μW cm-2, an open-circuit voltage (VOC) of 819.5 mV, and a short-circuit current density (JSC) of 0.12 mA cm-2, which makes it a viable candidate for application in self-powered devices.

Keywords: glucose fuel; highly effective; catalyst; nanoflowers highly; fuel cells

Journal Title: ACS applied materials & interfaces
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.