LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Co-Self-Assembly of Amphiphiles into Nanocomposite Hydrogels with Tailored Morphological and Mechanical Properties.

Photo from wikipedia

As one of the most amazing aspects of life, all living organisms are formed by self-assembly, a fundamental biological design process in which ordered nanostructures are assembled from small parts.… Click to show full abstract

As one of the most amazing aspects of life, all living organisms are formed by self-assembly, a fundamental biological design process in which ordered nanostructures are assembled from small parts. For example, most of the biological tissues contain structurally soft and hard parts that are usually hierarchically organized at nano or micro levels to achieve specific functions. Hydrogels are one of the most promising soft materials owing to their potential applications in building of biological tissues and stretchable sensors. In this work, a series of hydrogels are synthesized through the co-self-assembly of two types of amphiphiles in their aqueous solution prior to polymerization. Soft and hard parts with nanostructures of different order parameters are incorporated into the hydrogels. The hydrophilic segment (as soft phases) of the polymer network provides water absorption, fluid flow, and softness, whereas the hydrophobic segment (as hard phases) provides strength and tearing and fracture resistance. Appropriate soft/hard nanostructures and their interfaces allow for the tailoring of the desired morphological and mechanical properties, including a different wetting ability, toughness, energy dissipation, self-recovery, and fracture resistance arising from their nanostructures. This work provides insights into the design of nanostructured anisotropic hydrogels with controlled morphological and mechanical properties.

Keywords: self assembly; soft hard; assembly amphiphiles; mechanical properties; morphological mechanical; amphiphiles nanocomposite

Journal Title: ACS applied materials & interfaces
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.