LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Self-Healable Conductive Hydrogels with High Stretchability and Ultralow Hysteresis for Soft Electronics.

Photo by amandavickcreative from unsplash

Stretchable sensors based on conductive hydrogels have attracted considerable attention for wearable electronics. However, their practical applications have been limited by the low sensitivity, high hysteresis, and long response times… Click to show full abstract

Stretchable sensors based on conductive hydrogels have attracted considerable attention for wearable electronics. However, their practical applications have been limited by the low sensitivity, high hysteresis, and long response times of the hydrogels. In this study, we developed high-performance poly(vinyl alcohol) (PVA)/poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) based hydrogels post-treated with NaCl, which showed excellent mechanical properties, fast electrical response, and ultralow hysteresis properties. The hydrogels also demonstrated excellent self-healing properties with electrical and mechanical properties comparable to those of the original hydrogel and more than 150% elongation at break after the self-healing process. The high performance of the optimized hydrogels was attributed to the enhanced intermolecular forces between the PVA matrix and PEDOT:PSS, the favorable conformational change of the PEDOT chains, and an increase in localized charges in the hydrogel networks. The hydrogel sensors were capable of tracking large human motion and subtle muscle action in real time with high sensitivity, a fast response time (0.88 s), and low power consumption (<180 μW). Moreover, the sensor was able to monitor human respiration due to chemical changes in the hydrogel. These highly robust, stretchable, conductive, and self-healing PVA/PEDOT:PSS hydrogels, therefore, show great application potential as wearable sensors for monitoring human activity.

Keywords: ultralow hysteresis; self healing; conductive hydrogels; hysteresis; pedot pss

Journal Title: ACS applied materials & interfaces
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.