Here, we report on the comprehensive growth, characterization, and optoelectronic application of large-area, two-dimensional germanium selenide (GeSe) layers prepared using the pulsed laser deposition (PLD) technique. Back-gated phototransistors based on… Click to show full abstract
Here, we report on the comprehensive growth, characterization, and optoelectronic application of large-area, two-dimensional germanium selenide (GeSe) layers prepared using the pulsed laser deposition (PLD) technique. Back-gated phototransistors based on few-layered 2D GeSe have been fabricated on a SiO2/Si substrate for ultrafast, low noise, and broadband light detection, showing spectral functionalities over a broad wavelength range of 0.4-1.5 μm. The broadband detection capabilities of the device have been attributed to the self-assembled GeOx/GeSe heterostructure and sub-bandgap absorption in GeSe. Besides a high photoresponsivity of 25 AW-1, the GeSe phototransistor displayed a high external quantum efficiency of the order of 6.14 × 103%, a maximum specific detectivity of 4.16 × 1010 Jones, and an ultralow noise equivalent power of 0.09 pW/Hz1/2. The detector has an ultrafast response/recovery time of 3.2/14.9 μs and can show photoresponse up to a high cut-off frequency of 150 kHz. These promising device parameters exhibited by PLD-grown GeSe layers-based detectors make it a favorable choice against present-day mainstream van der Waals semiconductors with limited scalability and optoelectronic compatibility in the visible-to-infrared spectral range.
               
Click one of the above tabs to view related content.