LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Composite Hydrogel Conduit Incorporated with Platelet-Rich Plasma Improved the Regenerative Microenvironment for Peripheral Nerve Repair.

Photo by dancristianpaduret from unsplash

Peripheral nerve regeneration and functional recovery remain major challenges in clinical practice. Nerve guidance conduits (NGCs) which can regulate the regenerative microenvironment are beneficial for peripheral nerve repair. Platelet-rich plasma… Click to show full abstract

Peripheral nerve regeneration and functional recovery remain major challenges in clinical practice. Nerve guidance conduits (NGCs) which can regulate the regenerative microenvironment are beneficial for peripheral nerve repair. Platelet-rich plasma (PRP) can secrete multiple growth factors to regulate the regenerative microenvironment. However, current administration methods of PRP are rapidly activated followed by the burst release of growth factors, causing low therapeutic efficiency in vivo. To overcome these disadvantages, a composite nerve conduit was fabricated by incorporating PRP into a gelatin methacrylate (GelMA) and sodium alginate (SA) hydrogel. The GelMA/SA-3/PRP-20 NGCs possess optimal mechanical properties, degradation rate, and superior biological performance. Importantly, GelMA/SA-3/PRP-20 NGCs achieved the sustained release of two major growth factors (VEGF-A, PDGF-BB) from PRP. Moreover, the GelMA/SA-3/PRP-20 NGCs significantly promoted the migration of Schwann cells and the neovascularization of endothelial cells in vitro. While bridging 10 mm rat sciatic nerve defects, the GelMA/SA-3/PRP-20 NGCs promoted axonal regeneration and functional recovery of peripheral nerves. Therefore, the GelMA/SA-3/PRP-20 NGCs could regulate the regenerative microenvironment by sustained release of growth factors from PRP and shed new light on the clinical application of PRP in peripheral nerve repair.

Keywords: nerve repair; peripheral nerve; gelma prp; nerve; regenerative microenvironment; prp ngcs

Journal Title: ACS applied materials & interfaces
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.