LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Full-Color Sterically Shielded Boron Difluoride Emitters with Efficient and Ultrapure Electroluminescence via Sensitized Fluorescence.

Photo from wikipedia

Emitters with narrowband emissions are essential to improve the color purity of organic light-emitting diodes (OLEDs). Boron difluoride (BF) derivatives have preliminarily exhibited small full width at half-maximum (FWHM) values… Click to show full abstract

Emitters with narrowband emissions are essential to improve the color purity of organic light-emitting diodes (OLEDs). Boron difluoride (BF) derivatives have preliminarily exhibited small full width at half-maximum (FWHM) values in electroluminescent devices, which, however, still face formidable challenges in recycling triplet excitons and realizing full-color emissions covering the whole visible spectra. Here, a systematic molecular engineering on the aza-fused aromatic emitting core and peripheral substitutions is made, affording a family of full-color BF emitters spanning from blue (461 nm) to red (635 nm), with high photoluminescence quantum yields of >90% and a small FWHM of 0.12 eV. The device architectures are delicately manipulated to form effective thermally activated sensitizing emissions, first affording the highest maximum external quantum efficiency of >20% for BF-based OLEDs with negligible efficiency roll-off.

Keywords: full color; color; sterically shielded; shielded boron; boron difluoride; color sterically

Journal Title: ACS applied materials & interfaces
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.