LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

On-Chip Liquid Manipulation via a Flexible Dual-Layered Channel Possessing Hydrophilic/Hydrophobic Dichotomy.

Photo by _louisreed from unsplash

The hydrophilic/hydrophobic cooperative interface provides a smart platform to control liquid distribution and delivery. Through the fusion of flexibility and complex structure, we present a manipulable, open, and dual-layered liquid… Click to show full abstract

The hydrophilic/hydrophobic cooperative interface provides a smart platform to control liquid distribution and delivery. Through the fusion of flexibility and complex structure, we present a manipulable, open, and dual-layered liquid channel (MODLC) for on-demand mechanical control of fluid delivery. Driven by anisotropic Laplace pressure, the mechano-controllable asymmetric channel of MODLC can propel the directional slipping of liquid located between the paired tracks. Upon a single press, the longest transport distance can reach 10 cm with an average speed of ∼3 cm/s. The liquid on the MODLC can be immediately manipulated by pressing or dragging processes, and versatile liquid-manipulating processes on hierarchical MODLC chips have been achieved, including remote droplet magneto-control, continuous liquid distributor, and gas-producing chip. The flexible hydrophilic/hydrophobic interface and its assembly can extend the function and applications of the wettability-patterned interface, which should update our understanding of complex systems for sophisticated liquid transport.

Keywords: liquid manipulation; dual layered; manipulation via; chip liquid; hydrophilic hydrophobic

Journal Title: ACS applied materials & interfaces
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.