LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Biodegradable MOFilters for Effective Air Filtration and Sterilization by Coupling MOF Functionalization and Mechanical Polarization of Fibrous Poly(lactic acid).

Photo from wikipedia

High-performance air filtration materials are important for addressing the airborne pollutants. Herein, we propose an unprecedented access to biodegradable poly(lactic acid) (PLA)-based MOFilters with excellent filtering performance and antibacterial activity.… Click to show full abstract

High-performance air filtration materials are important for addressing the airborne pollutants. Herein, we propose an unprecedented access to biodegradable poly(lactic acid) (PLA)-based MOFilters with excellent filtering performance and antibacterial activity. The fabrication involved a stepwise in situ growth of zeolitic imidazolate framework-8 (ZIF-8) crystals at the surface of microfibrous PLA membranes, followed by mechanical polarization under high pressure and low temperature (5 MPa, 40 °C) to trigger the ordered alignment of dipoles in PLA chains and ZIF-8. The unique structural features allowed these PLA-based MOFilters to achieve an exceptional combination of excellent tensile properties, high dielectric constant (up to 2.4 F/m), and enhanced surface potential as high as 4 kV. Arising from the remarkable surface activity and electrostatic adsorption effect, a significant increase (from over 12% to nearly 20%) in PM0.3 filtration efficiency was observed for the PLA-based MOFilters compared to that of pure PLA counterparts, with weak relation to the airflow velocities (10-85 L/min). Moreover, the air resistance was controlled at a considerably low level for all the MOFilters, that is, below 183 Pa even at 85 L/min. It is worth noting that distinct antibacterial properties were achieved for the MOFilters, as illustrated by the inhibitive rates of 87 and 100% against Escherichia coli and Staphylococcus aureus, respectively. The proposed concept of PLA-based MOFilters offers unprecedented multifunction integration, which may fuel the development of biodegradable versatile filters with high capturing and antibacterial performances yet desirable manufacturing feasibility.

Keywords: pla based; air; poly lactic; lactic acid; air filtration; filtration

Journal Title: ACS applied materials & interfaces
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.