We present the synthesis and applications of multifunctional hollow porous carbon spheres with well-ordered pore architecture and ability to encapsulate functional nanoparticles. In the present work, the applications of hollow… Click to show full abstract
We present the synthesis and applications of multifunctional hollow porous carbon spheres with well-ordered pore architecture and ability to encapsulate functional nanoparticles. In the present work, the applications of hollow mesoporous carbon capsules (HMCCs) are illustrated in two different contexts. In the first approach, the hollow capsule core is used to encapsulate silver nanoparticles to impart antimicrobial characteristics. It is shown that silver-loaded HMCCs (concentration ∼100 μg/mL) inhibit the growth and multiplication of bacterial colonies of Escherichia coli (Gram-negative) and Staphylococcus aureus (Gram-positive) up to 96% and 83%, respectively. In the second part, the fabrication of hierarchical micro- and nanostructured superhydrophobic coatings of HMCCs (without encapsulation with silver nanoparticles) is evaluated for anti-bioadhesion properties. Studies of protein adsorption and microorganism and platelet adhesion have shown a significant reduction (up to 100%) for the HMCC-based superhydrophobic surfaces compared with the control surfaces. Therefore, this unique architecture of HMCCs and their coatings with the ability to encapsulate functional materials make them a promising candidate for a variety of applications.
               
Click one of the above tabs to view related content.