A conjugated microporous polymer (CMP) material was designed with pore function of cyano and pyridyl groups that act as potential binding sites for Ag+ ion capture. Ultrafine silver nanoparticles (less… Click to show full abstract
A conjugated microporous polymer (CMP) material was designed with pore function of cyano and pyridyl groups that act as potential binding sites for Ag+ ion capture. Ultrafine silver nanoparticles (less than 5 nm) were successfully supported on the predesigned CMP material to afford Ag0@CMP composite materials by means of a simple liquid impregnation and light-induced reduction method. Spherical Ag0 nanoparticles with a statistical mean diameter of ca. 3.9 nm were observed and characterized by scanning electron microscopy and transmission electron microscopy. The Ag0@CMP composite materials were consequently exploited as high-performance nanocatalysts for the reduction of nitrophenols, a family of priority pollutants, at various temperatures and ambient pressure. Moreover, the composite nanocatalysts feature convenient recovery and excellent reusability. This work presents an efficient platform to achieve ultrafine metal nanoparticles immobilized on porous supports with predominant catalytic properties by virtue of the structural design and spatial confinement effect available for conjugated microporous polymers.
               
Click one of the above tabs to view related content.