LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Increasing Stability of Biotin Functionalized Electrospun Fibers for Biosensor Applications.

Photo by a2eorigins from unsplash

This paper describes the effects of both solvent and copolymer block lengths on the stability of electrospun poly(lactic acid)/poly(lactic acid)-b-poly(ethylene glycol) (PLA/PLA-b-PEG) and PLA/PLA-b-PEG-Biotin fibers in water. By tailoring the… Click to show full abstract

This paper describes the effects of both solvent and copolymer block lengths on the stability of electrospun poly(lactic acid)/poly(lactic acid)-b-poly(ethylene glycol) (PLA/PLA-b-PEG) and PLA/PLA-b-PEG-Biotin fibers in water. By tailoring the block length of copolymers PLA-b-PEG, water stability of electrospun fibers is improved over fibers reported previously. The solvent used also influenced the stability and hydrophilicity of resulting fibers. Fibers formed using 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP) have greater water stability, but less PEG at the surface of fibers than fibers spun from dimethylformamide (DMF). Attaching biotin to the end of PLA(3600)-b-PEG(2000) and spinning from DMF resulted, initially, in 7.6% of the total biotin incorporated into the fiber, assuming every PEG terminal had one biotin attached (1.1 mg of biotin per gram of fiber) available at the fibers' surface. In addition, PLA/PLA(3600)-b-PEG(2000)-Biotin spun from DMF hindered biotin migration to the aqueous phase, leaving 2% of the incorporated biotin remaining at the surface of fibers after 7 days of water exposure. The water wicking ability of DMF spun fibers also increased significantly with the biotin attachment to the PEG terminal. While HFIP spun fibers lost little biotin from fibers, there was no detectable surface available biotin, indicating biotin was at the interior. With biotin and PEG at the interior of the fibers spun from HFIP, the water wicking remained the same for PLA/PLA(3600)-b-PEG(2000) spun samples and decreased for PLA/PLA(5700)-b-PEG(1000). The dissimilarities observed in water wicking for HFIP spun samples are primarily the result of differences in fiber morphology.

Keywords: biotin; water; pla; pla pla; stability; peg

Journal Title: ACS applied materials & interfaces
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.