LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Detecting Electric Dipoles Interaction at the Interface of Ferroelectric and Electrolyte Using Graphene Field Effect Transistors.

Photo by glenncarstenspeters from unsplash

Graphene was inserted into the interface between electric dipole layers from DEME-TFSI ionic liquid (top-gate) and ferroelectric Pb0.92La0.08Zr0.52Ti0.48O3 (PLZT, back-gate) to probe the interface dipole-dipole interaction in response to DC… Click to show full abstract

Graphene was inserted into the interface between electric dipole layers from DEME-TFSI ionic liquid (top-gate) and ferroelectric Pb0.92La0.08Zr0.52Ti0.48O3 (PLZT, back-gate) to probe the interface dipole-dipole interaction in response to DC and pulsed gate voltages. A highly complicated behavior of the interface dipole-dipole interaction has been revealed as a combination of electrostatic and electrochemical effects. The interfacial polar molecules in the DEME-TFSI electrical double layer are pinned with assistance from the PLZT back-gate in response to a DC top-gate pump, leading to strong nonlinear electrochemical behavior. In contrast, depinning of these molecules can be facilitated by a faster pulsed top-gate pump, which results in a characteristic linear electrostatic behavior. This result not only sheds light on the dynamic dipole-dipole interactions on the interface between functional materials but also prototypes a unique pump and probe approach using graphene field effect transistors to detect the interface dipole-dipole interaction.

Keywords: using graphene; graphene field; dipole dipole; interaction; interface; field effect

Journal Title: ACS applied materials & interfaces
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.