LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Uptake of Pb(II) and Cd(II) on Chitosan Microsphere Surface Successively Grafted by Methyl Acrylate and Diethylenetriamine.

Photo by firojali from unsplash

A novel adsorbent, CS-MA-DETA microspheres, for uptake of heavy metal ions from aqueous solutions was first fabricated via two-step grafting methyl acrylate (MA) and diethylenetriamine (DETA) onto chitosan (CS) microsphere… Click to show full abstract

A novel adsorbent, CS-MA-DETA microspheres, for uptake of heavy metal ions from aqueous solutions was first fabricated via two-step grafting methyl acrylate (MA) and diethylenetriamine (DETA) onto chitosan (CS) microsphere surface in the absence of cross-linkers. CS-MA-DETA microspheres of 3.04 μm in mean diameter were of uniformly wrinkle-like topography sketched out by SEM, whose surface after decoration by MA and DETA was stable and beneficial to metal ion capture. Its chemical composition, microstructure, and thermal property were characterized by elemental analysis, FTIR, XRD, BET, and TGA techniques, and the achieved quantitative results mainly included C/N ratio (4.76), crystallinity (31.20%, 19.75% of CS), specific surface area (27.806 m2 g-1), pore diameter (3.452 nm), and mass loss at the first stage (3%, around 10% of CS), which indicated a successful synthesis, well-defined structure, and good thermostability. Adsorption tests of CS-MA-DETA microspheres were performed in Pb(II) and/or Cd(II) solution(s) at various pH values, contact time, and initial concentrations, exhibiting an excellent adsorption capability. Its maximum adsorption capacity calculated by Langmuir model was 239.2 mg Pb(II)/g, or 201.6 mg Cd(II)/g, which was higher than those of most available CS-based adsorbents. Furthermore, several adsorption kinetic and isotherm models were employed to investigate its uptake behavior, implying that it was mainly a monolayer adsorption and chemisorption process. Five-cycle reusability tests demonstrated CS-MA-DETA microspheres could be repeatedly used without significant capacity loss (<10%). Additionally, several potential bonding modes and adsorption sites for both metal ions were also proposed. Overall, CS-MA-DETA microspheres with outstanding adsorption performance toward Pb(II) and/or Cd(II) might serve as a new absorbent for wastewater purification.

Keywords: adsorption; deta microspheres; methyl acrylate; acrylate diethylenetriamine; chitosan microsphere

Journal Title: ACS applied materials & interfaces
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.