LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Multiresponsive Vesicles Composed of Amphiphilic Azacalix[4]pyridine Derivatives.

Photo by tomsdg from unsplash

Biomimicry of multiresponsive recognition of cell membrane with artificial membranes is challengeable. In this work, we designed azacalix[4]pyridine-based amphiphilic molecules 1 and 2. The self-assembly behaviors of 1 and 2… Click to show full abstract

Biomimicry of multiresponsive recognition of cell membrane with artificial membranes is challengeable. In this work, we designed azacalix[4]pyridine-based amphiphilic molecules 1 and 2. The self-assembly behaviors of 1 and 2 were investigated in aqueous medium. As demonstrated by DLS, SEM, TEM, and LSCM measurements, 1 formed stable vesicles (size 322 nm) in a mixture of THF/water, whereas 2 produced giant vesicles with decreased stability (size 928 nm). The vesicles composed of 1, with surface being engineered with the cavities of azacalix[4]pyridines, showed selective responses to a variety of guests including zinc ion, hydroquinone, and proton as monitored by DLS.

Keywords: composed amphiphilic; azacalix pyridine; amphiphilic azacalix; vesicles composed; multiresponsive vesicles

Journal Title: ACS applied materials & interfaces
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.