LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Ultimate Control of Rate-Dependent Adhesion for Reversible Transfer Process via a Thin Elastomeric Layer.

Photo by henrylim from unsplash

Adhesion between a stamp with an elastomeric layer and various devices or substrates is crucial to successfully fabricate flexible electronics using a transfer process. Although various transfer processes using stamps… Click to show full abstract

Adhesion between a stamp with an elastomeric layer and various devices or substrates is crucial to successfully fabricate flexible electronics using a transfer process. Although various transfer processes using stamps with different adhesion strengths have been suggested, the controllable range of adhesion is still limited to a narrow range. To precisely transfer devices onto selected substrates, however, the difference in adhesion between the picking and placing processes should be large enough to achieve a high yield. Herein, we report a simple way to extend the controllable adhesion range of stamps, which can be achieved by adjusting the thickness of the elastomeric layer and the separation velocity. The adhesion strength increased with decreasing layer thickness on the stamp due to a magnification of the confinement and rate-dependent effects on the adhesion. This enabled the controllable range of the adhesion strength for a 15 μm-thick elastomeric layer to be extended up to 12 times that of the bulk under the same separation conditions. The strategy of designing stamps using simple adhesion tests is also introduced, and the reversible transfer of thin Si chips was successfully demonstrated. Tuning and optimizing the adhesion strength of a stamp according to the design process suggested here can be applied to various materials for the selective transfer and replacement of individual devices.

Keywords: elastomeric layer; layer; adhesion; transfer process

Journal Title: ACS applied materials & interfaces
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.