A multifunctional nanosystem based on two-dimensional molybdenum disulfide (MoS2) was developed for synergistic tumor therapy. MoS2 was stabilized with lipoic acid (LA)-modified poly(ethylene glycol) and modified with a pH-responsive charge-convertible… Click to show full abstract
A multifunctional nanosystem based on two-dimensional molybdenum disulfide (MoS2) was developed for synergistic tumor therapy. MoS2 was stabilized with lipoic acid (LA)-modified poly(ethylene glycol) and modified with a pH-responsive charge-convertible peptide (LA-K11(DMA)). Then, a positively charged photosensitizer, toluidine blue O (TBO), was loaded on MoS2 via physical absorption. The negatively charged LA-K11(DMA) peptide was converted into a positively charged one under acidic conditions. Charge conversion of the peptide could reduce the binding force between positively charged TBO and MoS2, leading to TBO release. Furthermore, the positively charged nanosystem was easily endocytosed by cells. Photo-induced hyperthermia of MoS2 in the tumor areas could promote TBO release and exhibited photothermal therapy. In vitro and in vivo results demonstrated that fluorescence and photo-induced reactive oxygen species (ROS) generation of TBO were severely decreased by MoS2 under normal conditions. While in the acidic condition, the pH-responsive nanosystem exhibited a highly specific and efficient antitumor effect with TBO release and photo-induced ROS generation, suggesting to be a promising accessory for synergistic tumor therapy.
               
Click one of the above tabs to view related content.