LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Elemental Precursor Solution Processed (Cu1-xAgx)2ZnSn(S,Se)4 Photovoltaic Devices with over 10% Efficiency.

Photo by homajob from unsplash

The partial substitution of Cu+ with Ag+ into the host lattice of Cu2ZnSn(S,Se)4 thin films can reduce the open-circuit voltage deficit (Voc,deficit) of Cu2ZnSn(S,Se)4 (CZTSSe) solar cells. In this paper,… Click to show full abstract

The partial substitution of Cu+ with Ag+ into the host lattice of Cu2ZnSn(S,Se)4 thin films can reduce the open-circuit voltage deficit (Voc,deficit) of Cu2ZnSn(S,Se)4 (CZTSSe) solar cells. In this paper, elemental Cu, Ag, Zn, Sn, S, and Se powders were dissolved in solvent mixture of 1,2-ethanedithiol (edtH2) and 1,2-ethylenediamine (en) and used for the formation of (Cu1-xAgx)2ZnSn(S,Se)4 (CAZTSSe) thin films with different Ag/(Ag + Cu) ratios. The key feature of this approach is that the impurity atoms can be absolutely excluded. Further results indicate that the variations of grain size, band gap, and depletion width of the CAZTSSe layer are generally determined by Ag substitution content. Benefiting from the Voc enhancement (∼50 mV), the power conversion efficiency is successfully increased from 7.39% (x = 0) to 10.36% (x = 3%), which is the highest efficiency of Ag substituted devices so far.

Keywords: solution processed; elemental precursor; xagx 2znsn; processed cu1; precursor solution; cu1 xagx

Journal Title: ACS applied materials & interfaces
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.