LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Dielectrophoretic-Assembled Single and Parallel-Aligned Ag Nanowire-ZnO-Branched Nanorod Heteronanowire Ultraviolet Photodetectors.

Photo by irenedavila from unsplash

The branched hierarchical heteronanowires have been widely studied for optoelectronics application because of their unique electronic and photonic performances. Here, we successfully synthesized Ag nanowire-ZnO-branched nanorod heteronanowires based on an… Click to show full abstract

The branched hierarchical heteronanowires have been widely studied for optoelectronics application because of their unique electronic and photonic performances. Here, we successfully synthesized Ag nanowire-ZnO-branched nanorod heteronanowires based on an improved hydrothermal method. Then we fabricated single heteronanowire across a Au electrode pair with different gap widths and parallel-aligned heteronanowires on a Au interdigitated electrode with a dielectrophoresis method, indicating the flexibility and operability of the dielectrophoresis assembly method. Increased photocurrent and shortened response time could be obtained by air-annealing and Ar-plasma post-treatments. A large responsivity of 2.5 A W-1 and a linear dynamic range of 74 dB could be obtained, indicating stable responsivity for both weak and strong illumination. The excellent photoresponse performance is attributed to the structure superiority of heteronanowires. The proposed strategy of dielectrophoresis-assembled heteronanowires provides a new opportunity to design and fabricate hierarchical nanostructure photodetectors.

Keywords: zno branched; branched nanorod; nanowire zno; parallel aligned; heteronanowire

Journal Title: ACS applied materials & interfaces
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.