LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Electrolyte Based on Easily Synthesized, Low Cost Triphenolate-Borohydride Salt for High Performance Mg(TFSI)2-Glyme Rechargeable Magnesium Batteries.

Photo by joshuafernandez from unsplash

A new class of electrolyte based on TFSI- and triphenolate-borohydride anions was designed and produced which fulfill all requirements of easy synthesis, high ionic conductivity, wide potential window, and noncorrosion… Click to show full abstract

A new class of electrolyte based on TFSI- and triphenolate-borohydride anions was designed and produced which fulfill all requirements of easy synthesis, high ionic conductivity, wide potential window, and noncorrosion of Al current collector. The electrolyte composed of magnesium triphenolate borohydride and Mg(TFSI)2 in glyme simultaneously displays a high conductivity of 5.5 mS cm-1 at 25 °C and a reversible Mg plating/stripping with high current density and Coulombic efficiency at room temperature. By addition of a slight amount of MgCl2 to this electrolyte, a Coulombic efficiency of 90% in an SS/Mg cell, stable cycling performance, and a wide anodic potential of 3.4 V vs Mg2+/Mg on Al current collector can be reached. Reversible and efficient Mg insertion/deinsertion with a high capacity of 94 mAh g-1 and 96% Coulombic efficiency was obtained in a Mo6S8 Chevrel cathode phase.

Keywords: triphenolate; electrolyte based; tfsi glyme; magnesium; triphenolate borohydride

Journal Title: ACS applied materials & interfaces
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.