LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Using Predefined M3(μ3-O) Clusters as Building Blocks for an Isostructural Series of Metal-Organic Frameworks.

Photo from wikipedia

Metal-organic frameworks (MOFs) have attracted much attention in the past decade owing to their unprecedented internal surface areas, tunable topologies, designable surfaces, and various potential applications. One bottleneck in the… Click to show full abstract

Metal-organic frameworks (MOFs) have attracted much attention in the past decade owing to their unprecedented internal surface areas, tunable topologies, designable surfaces, and various potential applications. One bottleneck in the field regarding MOF synthesis is controlling the metal-containing secondary building unit (SBU) incorporated into the structure. In this work we report the synthesis and characterization of five trimeric [M3(μ3-O)(CH3CO2)6]x clusters (where M = Fe3+, Cr3+, Fe3+/Cr3+, Fe3+/Co2+, or Fe3+/Ni2+ and x = +1 or 0). The monocarboxylate capping ligand, acetate in this case, readily undergoes exchange with several difunctional counterparts, including 1,4-benzenedicarboxylic acid (H2-BDC) and biphenyl-4,4'-dicarboxylic acid (H2-BPDC), for the formation of an isostructural series of MOFs, several of which are newly reported (for M = Fe3+/Cr3+, Fe3+/Co2+, and Fe3+/Ni2+) and show excellent CO2 adsorption properties. In this report, a host of techniques including NMR, ICP, and ESI-MS are used to probe the ligand exchange process and composition of the SBUs, and XAS is used to monitor the Fe3+ and Cr3+ environment throughout the reactions, giving strong evidence that the clusters stay intact throughout the MOF synthesis. This work reveals that predefined SBUs is an effective means to create metal-substituted analogues of known frameworks. Further, CO adsorption and in situ IR are used to probe accessibility of the metals after solvent removal. We show for the first time that the incorporation of the neutral clusters, containing weaker Lewis acids like Ni2+ and Co2+, can promote the formation of open metal sites in the MOF frameworks, structural features known to enhance the binding energy of small guest molecules like CO2.

Keywords: isostructural series; metal organic; metal; fe3 cr3; fe3; organic frameworks

Journal Title: ACS applied materials & interfaces
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.