LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Vertical Orientation of Nanocylinders in Liquid-Crystalline Block Copolymers Directed by Light.

Photo from wikipedia

The microphase-separated nanostructures of block copolymers are ideal nanotemplates for advanced fabrication, but they are greatly limited by the rapid and precise manipulation especially at room temperature. Here we report… Click to show full abstract

The microphase-separated nanostructures of block copolymers are ideal nanotemplates for advanced fabrication, but they are greatly limited by the rapid and precise manipulation especially at room temperature. Here we report one method of light-directed regulation of nanostructures in thin films of liquid-crystalline diblock copolymers containing azobenzene units as photoresponsive mesogens. The in-plane orientated nanocylinders in thin film can be light-directed into out-of-plane on a time scale of seconds at room temperature. This fast regulation is beneficial from the fast process of photoinduced phase transition of the mesogenic block from liquid crystal to disordered isotropic phase. Several influence factors like the molecular weight of polymer, film thickness, light intensity, and relative humidity were studied in the light-directed processes. In addition, the photoregulated nanostructures demonstrate their capability of being photopatterned and further used as nanotemplates for fabrication of nanoparticles. The light-directed method shows noncontact, precise, and reversible features, enabling it to find further applications in fast control of nanostructures for nanofabrication and nanoengineering.

Keywords: light directed; block; vertical orientation; liquid crystalline; block copolymers

Journal Title: ACS applied materials & interfaces
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.